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Theory of peak capacity in gradient elution
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Abstract

Peak capacity is the best measure of the performance of a gradient separation. In this paper, the theory of peak capacity for the standard
operating conditions of reversed-phase and ion-exchange chromatography is outlined. The influence of the operating conditions on the peak
capacity of a separation are discussed. Finally, bandspreading phenomena in gradient chromatography are analyzed.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

The earliest publications on the subject of peak capacity
n gradient elution chromatography was a short note by C.G.
orváth and S.R. Lipsky in Analytical Chemistry in 1967[1],

ollowing the creation and definition of the term by Giddings
or isocratic chromatography[2]. The paper concludes: “It
s apparent from the present considerations that the goal of
ast chromatography can best be approached in liquid chro-

atography by employing gradient elution. . .”. The present
mportance of gradient elution can be seen in the multitude of
wo-dimensional LC/LC separations that have moved to the
orefront of today’s separations technology[3–6]. In some
ases, a two-dimensional separations scheme has also com-
ined an isocratic separation in the first dimension with a
radient separation in the second dimension[7]. Also, the

mpact of gradient elution in simpler separation schemes can
e seen in the work of Shen et al. who have achieved peak ca-
acities in the order of 1000 in a single separation dimension

8]. The general importance of gradient separations in modern
PLC has been demonstrated in an article on comprehensive

wo-dimensional HPLC by Bushey and Jorgenson[9].

been laid in the late 1970s by Horváth and coworkers[10,11].
Our knowledge has further improved over time (e.g.[12]) and
still today progress is being made in resolving specific is
[13–15]. A subject that was studied by several workers
been the selectivity of different packings[16–19]. In recen
times, new attempts have been made to understand and
sure the selectivity of reversed-phase columns[20–22]. For
methods development, gradient elution is commonly us
the first step[23], but in modern times, a gradient techniq
is often the final goal of the method development effort[24].

The general theories of gradient chromatography,
outlined in papers by Snyder[25] and Jandera and Churácek
[26]. Later, Snyder and coworkers dealt specifically w
the subject of gradients in reversed-phase chromatog
[27,28]. Very readable reviews of the same theories ca
found also in the newer references[23,29]. With today’s
knowledge, the elution patterns in gradient chromatogr
are predictable based on few preliminary experiments
embrace the experimental space (e.g.[30–32]).

While there is now a solid knowledge of the peak spa
phenomena in gradient elution, a complete measure o
quality of a separation requires the use of the peak widt
The majority of the discussions in the current paper fo-
uses on reversed-phase chromatography. The foundations
f our understanding of reversed-phase chromatography have

well. In this paper, we are advocating the use of peak capacity
as such a measure in the case of a gradient separation, and
we will develop the underlying theory. A very good definition
of peak capacity has been provided by Giddings in his early
w m-
p ons”

d.
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ork: “The peak capacity is the upper limit of resolvable co
onents for a given technique under prescribed conditi
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[2,33]. Grushka[34] elaborated on the factors that influence
peak capacity, such as the influence of the plate number, the
linear velocity or temperature. He also briefly discussed peak
capacity under time normalization, as was done later in more
detail by Neue and Mazzeo[35]. Peak capacity is a good
measure of the quality of a separation, if other measures are
absent. Stadalius et al.[36] used it for the assessment of the
quality of a peptide separation, as was done in a general model
for the HPLC separation of large molecules by Snyder and
Stadalius[37]. Similarly, the concept was used for the sep-
aration of proteins by ion-exchange[38]. The concept was
also used for the separation of complex mixtures[30], where
an assessment of the total separation capability of the chro-
matographic setup is important. Peak capacity has occasion-
ally also been used to assess the separation power of isocratic
separations[39,40]. A special case was the assessment of the
peak capacity in size-exclusion chromatography[41].

A complication for the theoretical assessment of peak
capacity in gradient elution is the peak compression phe-
nomenon postulated by Snyder and Saunders[42]. The idea
of peak compression has also been adopted by other authors
[43–45], but a proof of the existence of this phenomenon
does not exist. Snyder’s own research gave results that con-
tradicted the existence of a peak compression phenomenon.
First, Stadalius et al.[36,46]postulated an empirical factorJ
that was compensating for the difference between the experi-
m peak
c at
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words, it is the retention time measured in peak width units.
The peak width is commonly defined as four times the value
of the standard deviationσ of a peak. If the peak width is
changing with the retention timetr, the peak capacity needs
to be expressed in the following integral form:

Pc = 1 +
∫ tr

t0

1

4σ
dt (1)

t0 is the retention time of the unretained peak. In all the fol-
lowing discussion, we will assume that the gradient starts at
the column inlet immediately after the injection.

The peak width of every peak is a function of the retention
factorke at the point of elution and the column plate countN:

σ = t0√
N

(ke + 1) (2)

With this, we obtain for the peak capacity in the gradient:

Pc = 1 +
√

N

4

∫ tr

t0

1

t0

1

ke + 1
dt (3)

Of course, the implicit assumption in this formula is that the
plate count is not a function of the gradient and is uniform for
all analytes. In reality, this is not the case, since the plate count
depends on the diffusion coefficient of the analyte, which in
turn depends on its molecular weight and the viscosity of
the solvent. In order to proceed beyond this, one needs to
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ental results and the theoretical predictions based on a
ompression factorG. Hearn’s results[47] demonstrated th
or the peptides studied the measured peak width was
arger than the value predicted using the peak compre
actorG. Then, Stuart et al.[48] confirmed their own earlie
esults and concluded that the product of the empirical fa
and the gradient compression factorG was rather consta
nd equal to 1.1.

In this paper, I will first derive the equations that
cribe the peak capacity in gradient chromatography
or reversed-phase chromatography and ion-exchange
atography. This is followed by a demonstration of how
eak capacity changes with a change in the gradient o

ion. In spite of the complexity of the underlying equati
simple pattern describes the evolution of the peak cap
ith gradient retention in reversed-phase chromatograp

on-exchange chromatography, the dominating factor o
volution of peak capacity is the ratio of the analyte ch
o the charge of the eluting ion. Finally, I will briefly di
uss the phenomenon of peak compression in reversed-
hromatography from a new point of view.

. Derivation of the theory and discussion of the
esults

.1. Definition of the peak capacity

The peak capacityPc is defined as number of pea
hat can be separated within a retention window. With o
e

now more about the relationship of the diffusion coeffic
ith the elution pattern of the analytes. Such a pattern ca

ound for example in the case of a separation of oligom
49], where diffusion decreases as retention increases
he general case to be discussed here, we simply su

uniform sample, for which an average plate count ca
ssumed.

The retention factor at the point of elution (and thus
eak width) is a function of the gradient retention factorkg,
hich is defined as usually:

g = tr

t0
− 1 (4)

his allows us to express the peak capacity as a functi
he gradient retention factor:

c = 1 +
√

N

4

∫ kg

0

1

ke(kg) + 1
dkg (5)

n order to assess the peak capacity for different gradient
eed to express the retention factor at the point of elutio
function of the gradient retention factor for every grad

echnique that we wish to consider. This can be accompl
or the gradient techniques for which solutions to the grad
quation are known.

.2. Solution to the general gradient equation

In the following, we will derive the peak capacity eq
ion in detail for reversed-phase chromatography and
xchange chromatography. In order to do this, we start
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the fundamental definition of the retention factor under gra-
dient conditions:

k = dts

dtm
(6)

Since the retention factor is variable, we have defined it in
the differential form.ts is the residence time in the station-
ary phase, andtm, the time spent in the mobile phase. This
equation can be rewritten:

dts

k(ts)
= dtm (7)

and integrated:∫ tr−t0

0

dts

k(ts)
=

∫ t0

0
dtm (8)

The right-hand side is nothing but the residence time of an
unretained peak:∫ tr−t0

0

dts

k(ts)
= t0 (9)

A solution to this equation will yield the gradient retention
factor for the gradient considered. In some cases, the change
in retention with time can be expressed as follows:

k(t) = k0f (t) (10)

I ly a
f vent
c osi-
t

tion
a∫

o

k

W

k

A

P

T radi-
e phase
c ions,
t

2

tor is
a we

change the solvent composition linearly with time, the local
retention factor changes with time as follows:

k = k0 e−B
c·t/tg (15)


c is the difference in solvent composition between the be-
ginning and the end of the gradient.B is the slope of the
relationship between the natural logarithm of the retention
factor and the organic solvent concentration.B depends on
the analyte, but is for the most part a function of the molecular
weight of the analyte.tg is the gradient run time.

The gradient equation thus becomes:

1

k0

∫ tr−t0

0
eB
c·t/tg dt = t0 (16)

Integration yields:

1

k0

tg

B
c
(eB
c(tr−t0)/tg − 1) = t0 (17)

which can be rearranged to yield:

kg = tr − t0

t0
= 1

B
c

tg

t0
ln

(
k0B
c

t0

tg
+ 1

)
(18)

If we define the gradient slope as follows:

G = B
c
t0 (19)
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n this case, the change in retention with time is exclusive
unction of the dependence of the retention with the sol
omposition combined with the change in solvent comp
ion with time.

Substituting this expression into the gradient equa
bove, we obtain:
tr

′

0

1

k0

dt

f (t)
= t0 (11)

r:

0 =
∫ tr

′
0 (f (t))−1dt

t0
(12)

ith this, the retention factor at the point of elution is

e = f (tr′)
t0

∫ kg

0

dt

f (t)
(13)

nd the peak capacity becomes:

c = 1 +
√

N

4

∫ kg

0

1

(f (tr′)/t0)
∫ kg

0 (f (t))−1dt + 1
dkg (14)

his is the general equation for the peak capacity under g
nt conditions. For some conditions, such as reversed-
hromatography or ion-exchange under specific condit
he equation can be integrated.

.3. Peak capacity in reversed-phase chromatography

In reversed-phase chromatography, the retention fac
n exponential function of the solvent composition. If
tg

he retention factor under gradient conditions is:

g = 1

G
ln(Gk0 + 1) (20)

he retention factor at the beginning of the gradient ca
erived from the last equation:

0 = 1

G
(eGkg − 1) (21)

he retention factor at the point of elutionke can be obtaine
s:

e = k0

Gk0 + 1
(22)

f the retention factor at the beginning of the gradient is la
hen Eq.(22)simplifies to:

e = 1

G
(22a)

his implies that the solvent composition at the point of
ion of a compound remains constant, if the compound is
etained at the beginning of the gradient and if the grad
lope does not change. In addition, for compounds tha
ell retained at the beginning of the gradient, the reten

actor at the point of elution is uniform, if the slopeB does
ot vary much, as is often the case for analytes of sim
olecular weight. This also means that the peak wid

ather constant, in agreement with practical experience
lso the discussion of Eq.(29)below).
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Combining Eqs.(21) and (22) allows us to express the
retention factor at the point of elution as a function of the
gradient retention factor:

ke = eGkg − 1

G eGkg
(23)

We will put this expression for the retention factor at the point
of elution into the equation for the peak capacity:

Pc = 1 +
√

N

4

∫ kg

0

1

(eGkg − 1)/(G eGkg) + 1
dkg (24)

With rearrangement, we obtain:

Pc = 1 +
√

N

4

∫ kg

0

eGkg

(eGkg − 1)/G + eGkg
dkg (25)

Integration yields the following expression for the peak ca-
pacity under reversed-phase conditions:

Pc = 1 +
√

N

4

1

G + 1
ln

(
G + 1

G
eGkg − 1

G

)
(26)

If we want to consider the entire peak capacity from the be-
ginning to the end of the gradient, we need to express the
gradient retention factor as a function of the solvent compo-
sition at the end of the gradient. With the definition of the
gradient slopeG in Eq. (19), the factorGkg required in the
l
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Fig. 1. Display of the function inG in Eq.(28). The function is proportional
to the peak capacity.

from 1 to 64. The smallest value exemplifies a gradient with
small molecules over a range of 10% organic. The largest
value is a representation of a gradient over the full solvent
composition range with peptides as samples. All axes are log-
arithmic. For a steep gradient over a limited solvent range,
the function is very low, under 1. For a flatter gradient with
a gradient steepness of around 0.1, most of the gradient per-
formance has been reached already, especially for gradients
covering a larger range in solvent composition.

In Fig. 2, the increase in the peak capacityP is shown
with an increase in the gradient duration for a few selected
gradients. The column plate count was assumed to be 10 000.
The lines shown apply to (from bottom to top) to gradients
covering a span of 20%, 30%, 40% and 100% organic. For
the nearly parallel lines that cover a narrower gradient span,
the peak capacity increases by only about 50% if the gradient
duration is increased by a factor of 10. For the gradient cov-
ering the entire solvent range, the increase in peak capacity
is initially about a factor of 2 with a 10-fold increase in the
gradient duration, but then the gain decreases for still slower

F
t

ast equation is nothing but the following:

kg = B
c (27)

hus, we can study the influence of the gradient slopeG for
fixed elution window
c and a type or molecular weig

ange of compounds characterized by a typical slopeB of
he relation of the logarithmic retention factor with solv
omposition with the following equation:

c = 1 +
√

N

4

1

G + 1
ln

(
G + 1

G
eB
c − 1

G

)
(28)

few comments might be necessary with respect to the
itude of the common values of the gradient slopeG and the
lopeB of the relationship of the logarithm of the retent
actor and the solvent composition. For small molecules
alue of B is about 10 (if the solvent concentration is
ressed as the volume fraction). Typical values forG for small
olecules are 0.1–0.3. The largest value obtained with

teep gradients is around 3, the smallest value for ver
radients is around 0.03. Typical values ofG for peptides ar
ver two times larger. This stems from the fact that a typ
alue ofB is about 40 for a small peptide, but the gradien
ypically executed over a narrower span of organic solve

The function inG andB
c of Eq.(28) is shown inFig. 1.
o obtain the peak capacity from this function, the value
he vertical axis needs to be multiplied by one fourth of
quare root of the plate count, e.g. 25 for a plate cou
0 000. The gradient steepness functionG covers the entir
ange of interest from very flat gradients (G= 0.01) to very
teep gradients (G= 8). The axis that describesB
c ranges
ig. 2. Peak capacity as a function of the gradient steepnessG: from bottom
o top: 20%, 30% 40%, 100% organic.
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gradients as well. This rather limited increase in separation
power with a significant increase in analysis time constrains
the manipulation of a separation via a simple expansion of
the gradient run time.

Under some circumstances, e.g. for the separation of large
molecules such as peptides or for rapid gradients that stretch
over a large range of solvent composition such as the gradients
used in combinatorial chemistry, Eq.(28)simplifies to:

P = 1 +
√

N

4

B
c

G + 1
(29)

This form of the equation has been used in previous publica-
tions where such rapid gradients were discussed[35,50,51].
The simplified form of the equation results from the assump-
tion that the peak width of all peaks in the chromatogram is
essentially equal. This permits for example the assessment
of the influence of extra-column effects on the peak capacity.
However, for gradients over a limited range of solvent com-
position with small molecule analytes, the complete Eq.(28)
should be used.

2.4. Peak capacity in ion-exchange chromatography

The theory of the gradient elution pattern in ion-exchange
chromatography had already been elaborated in the late 1950s
[ s on
t e
c n in
t

k

T ion is
t tant
p d to
i

D

D n
t ime:

k

T i-
t

A

K

T tor
k

Fig. 3. Peak capacityP as a function of the gradient retention factorkg for
ion-exchange separations. The charge ratio for each line is marked on the
graph.

the retention factor at the point of elutionke is:

ke = k(tr
′) = K

(Df tr′/tg)n
= 1

n + 1

tr
′

t0
= kg

n + 1
(35)

Now, in analogy to Eq.(3), the equation for the peak capacity
is simply:

Pc = 1 +
√

N

4

∫ kg

0

1

kg/(n + 1) + 1
dkg (36)

The integration of Eq.(36) results in the explicit solution for
the peak capacity in a salt gradient in ion-exchange chro-
matography:

Pc = 1 +
√

N

4
(n + 1)ln

(
kg

n + 1
+ 1

)
(37)

An important aspect of this equation is the fact that the peak
capacity depends on the charge of the ions to be separated,
or—more specifically—on the ration of the charge of the
ions to be separated to the charge of the competing ion. The
peak capacity is shown as a function of the gradient retention
factor for values ofn from 0.5 to 3 inFig. 3. For a particular
gradient retention factor, the peak capacity increases with the
value ofn.

2

hod
c hile
t nges
w the
f ter-
m
c elu-
t
c . For
r found
i

52]. In pure ion exchange, the retention factor depend
he concentration of the salt solutionD and the ratio of th
harge of the analyte to the charge of the competing io
he mobile phasen.

= K

Dn
(30)

he common way to execute an ion-exchange separat
o run a gradient with increasing salt solution (and cons
H). The concentration of the salt solution is programme

ncrease with the gradient timet:

(t) = Df
t

tg
(31)

f is the final salt concentration, andtg is the gradient ru
ime. Thus, the retention factor changes as follows with t

(t) = K

(Df t/tg)n
(32)

he equation for the retention timetr ′ under gradient cond
ions is:

1

K

∫ tr
′

0

(
Df

t

tg

)n

dt = t0 (33)

fter integration, we obtain forK:

= 1

n + 1

(
Df

tg

)n
tr

′n+1

t0
(34)

he ratiotr′/t0 is the nothing but the gradient retention fac
g. In the next step, we substitute Eq.(34) into Eq.(32), and
.5. Peak width patterns as a function of the gradient

Even if the peak capacity in a particular gradient met
annot be calculated from scratch, it is still worth our w
o see, how the retention factor at the point of elution cha
ith the gradient retention factor. The reason for this is

act that the retention factor at the point of elution de
ines the peak width, as shown in Eq.(2). If a relationship

an be found between the retention factor at the point of
ion ke and the gradient retention factorkg, the peak width
an be calculated as a function of the gradient retention
eversed-phase chromatography, such a dependence is
n Eq.(23), and in Eq.(35) for ion exchange.
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For reversed-phase gradients, the following link between
the peak width and the gradient retention factor can be estab-
lished:

σ = t0√
N

(
eGkg − 1

G eGkg
+ 1

)
(38)

For ion-exchange, we obtain:

σ = t0√
N

(
kg

n + 1
+ 1

)
(39)

These two equations point to a fundamentally different rela-
tionship between reversed-phase gradients and ion-exchange
gradients. In ion-exchange gradients, the peak width in-
creases linearly with the gradient retention factor. This is
not the case for reversed-phase chromatography, where the
increase in peak width with gradient retention is much more
moderate. This applies especially to the case of peptide sep-
arations, where the value ofGkg is much larger than 1, and
the peak width becomes constant:

σ ≈ t0√
N

(
1

G
+ 1

)
(40)

This situation is commonly encountered in the case of peptide
separations by reversed-phase chromatography. The cause of
this is the fact that the dependence of retention on solvent
c

peak
w the
p e
p f the
p ntal
a e
e width
i ar to
i ery
“ ts as
t n

F e-
t dient
s

factor at the point of elution and thus the peak width becomes
quickly constant and independent of retention. Note also that
the retention factor at the point of elution, and thus the peak
width, is much narrower for the “steeper” gradient. As can
be seen, the observed patterns of elution in reversed-phase
chromatography depend strongly on the gradient steepness
factorG.

Eq.(39), which applies to ion-exchange chromatography,
deserves an additional comment. The increase in peak width
with retention decreases with an increased charge of the an-
alyte. For highly charged analytes, the peak width will be-
come rather constant and independent on retention. This is
analogous to the situation in reversed-phase chromatography,
where peptides exhibit a constant peak width throughout the
gradient chromatogram. An example of such a situation is the
anion-exchange chromatography of oligonucleotides[55].

2.6. Patterns of peak capacity with gradient execution

Up to now, the discussion has focussed exclusively on the
influence of the gradient itself on the peak capacity, with a
fixed column performance, implying a fixed linear velocity.
However, a more interesting scenario can be found, if the
velocity is change at a fixed gradient run time. Under these
circumstances, the bandspreading phenomena inside the col-
umn as well as the execution of the gradient are changed
s ow
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m S
d nts
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2
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omposition is rather steep[53,54].
For the case of reversed-phase chromatography, the

idth pattern can be examined via the relationship in
arentheses of Eq.(38) (Fig. 4). The retention factor at th
oint of elution shown on the vertical axis is a measure o
eak width. The gradient retention factor forms the horizo
xis. For a “flat” gradient withG= 0.1 or less, as it can b
xecuted with small molecules as samples, the peak

ncreases with increased retention. This is not dissimil
socratic chromatography, which is the limiting case for v
flat” gradients. On the other hand, for “steeper” gradien
hey are common for peptide samples (G= 1), the retentio

ig. 4. The relationship between the parameterke + 1 and the gradient r
ention factorkg for various reversed-phase gradients with different gra
teepness functionsG.
imultaneously while maintaining a fixed solvent wind
or the elution of the analytes of interest. We have stu
his situation in previous publications[35,50,51]. In general
igher resolution is achieved at higher flow rates, espec

or rapid gradients from 0 to 100% organic, as they are c
on in the analysis of drugs in biological fluids with M
etection[56]. The same principle applies also to gradie

hat extend only over a narrower solvent composition ra
n example is shown inFig. 5. Plotted is the peak capac
s a function of the flow rate and the gradient duration
gradient that stretches over a range of 30% organic

olumn is a 50 mm× 2.1 mm column packed with 1.7�m
articles. For a very rapid gradient with a gradient dura
f only 1 min, the best results are obtained at a flow
round 1.2 mL/min. On the other hand, for a 60-min gr
nt the best conditions are around 0.25 mL/min. The m
tretched-out gradient also achieves a higher peak ca
han the fast gradient, but if the analysis time is import
well executed 1-min gradient can still achieve one thir

he peak capacity of a 60-min gradient.

.7. Bandspreading and peak compression

The bandspreading of a peak depends to some d
n the retention factor. At low velocities combined wit
igh retention factor, stationary phase diffusion may be
ominant factor of peak broadening. At intermediate to
elocities, the bandspreading is dominated by packed
on-uniformity terms, which do not depend on the reten

actor. At high velocities, the dependence of the m
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Fig. 5. Peak capacity as a function of flow rate and gradient duration for
an analyte with a molecular weight of 250 on a 50 mm× 2.1 mm column
packed with 1.7�m particles in reversed-phase chromatography. Gradient
span: 30%.

transfer on the retention factor is rather weak for retained
peaks on fully porous packings[57].

Therefore, the height-equivalent to a theoretical plateH is
a function of the locationL inside the column[57]:

H = dσ2
L

dL
(41)

and the total peak varianceσL2 is, therefore:

σ2
L =

∫ L

0
H(L) dL (42)

The theoretical plate heightH depends on the diffusion co-
efficientDM and the retention factork, and both in turn are a
function of the solvent composition and, therefore, a function
of the positionL of the band inside the column, which varies
with the details of the gradient execution:

H(L) = f (DM(L), k(L)) (43)

While this complicates the theoretical assessment, there is
no fundamental impediment to this measurement. A proce-
dure for the measurement of the theoretical plate height in
reversed-phase gradient chromatography has been propose
and demonstrated in[57].

We can use a modern version of the Van Deemter equation
[58] to estimate the influence of the different contributions to
t

H

A is a factor of the packed bed quality, the factorsγM and
γS are the obstruction factors in the mobile phase and the
stationary phase, respectively, andcM andcS are the mass
transfer coefficients for the mobile phase and the stationary
phase. Both the diffusion term (the second term) and the mass
transfer term (the third term) depend on the retention factork
and the diffusion coefficient in the mobile phaseDM and thus
are variable during gradient elution. In Eqs.(43) and(44),
this is expressed as the dependence on the positionL in the
column. In addition, the stationary phase diffusionDS may
also depend on the solvent composition, but the dependence
may be much weaker, and we have, therefore, rather assumed
an independence on the solvent composition.

The diffusion term shows an increase in stationary phase
diffusion with increasing residence in the column[59–61].
For slow, high-resolution gradients on modern, very small
particles, stationary phase diffusion may be a more important
factor than for larger particle sizes, where the longitudinal dif-
fusion plays an insignificant role. On the other hand, smaller
particles permit shorter run times for equal performance, and
under these circumstances the influence of stationary phase
diffusion is still small. With respect to the effect of the vari-
able retention on the mobile-phase and stationary-phase mass
transfer terms, the combination of both exhibits a maximum
at intermediate retention[55]. The consequence of this is
that the overall effect of the restriction to mass transfer is
o
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+ cS
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)
(44)
d

nly small for practical small-molecule separations.
This treatment demonstrates that the bandspreading i

ient chromatography is a function of the details of the elu
onditions. On the other hand, in realistic gradients unde
listic flow rates, the variation of the HETP during elutio
xpected to be rather small. In most practical circumsta
he effective migration of an analyte will occur over a v
imilar range of solvent composition, and therefore, the b
preading will be similar. In addition, the treatment sho
ere does not imply any band compression at all. The
ussion above showed that all phenomena that contribu
andspreading are essentially the same for an isocrat
ration or a gradient operation. During the migration
and inside the column, a band compression is therefor
xpected. The only contribution from the changing sol
omposition is an averaging effect over the contributions
ne would have encountered in an isocratic operation, i.e
ependence of some of the parameters of the Van De
quation on the position of the band inside the column
ussed above. Of course, in gradient elution, the rete
actor changes between the part of the peak that elutes
nd the part of the peak that elutes late. On the other h

he mere transformation of the peak from a band inside
olumn to a peak dissolved in mobile phase at the column
et does not include any peak sharpening mechanism, e
or under extreme circumstances not commonly encoun
n the practice of gradient chromatography, i.e. very s
radients or even step gradients. Consequently, if we a

he model of a separation of the bandspreading pheno
nside the column from the elution phenomena, the ide
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band compression needs to be dismissed. This is in agreement
with the measured data in reference[48]. We have recently
also executed computer models on peak compression under
the condition of step gradients, using a random walk model
in a porous packed bed. For any peaks that eluted unretained
after the gradient step caught up with them, no peak compres-
sion was observed. On the other hand, for peaks that simply
changed retention factor, some peak compression was ob-
served, when the gradient step caught up with the peak close
to the end of the column. Of course, computer experiments
may contain some flaws in the thought process, as do pure
theories. Therefore, carefully designed experiments are cur-
rently planned that will shed light on this subject and give a
final answer to the old question of peak compression.

2.8. Measuring peak capacity

Since peak capacity is such a good tool to determine the
quality of a gradient separation, a few words need to be said
about how to measure it in a practical chromatogram. It is
assumed that peaks occur over most of the gradient chro-
matogram. Then the peak capacity can be calculated from
the peak widthsw in the chromatogram as follows:

P = 1 + tg

(1/n)
∑n

1w
(45)

n . As
a im-
p idth.
I sep-
a width
i , and
o . In
o chro
m radi-
e e cir-
c to be
r gh-
o at the
b need
t used
f size
p p in
m cess
o m. If
t sured
v only
a ed for
t

3

acity
a . The
t for

reversed-phase gradients and for ion-exchange gradients has
been presented. Also, the combination of velocity-dependent
bandspreading with the gradient elution profile can be derived
to permit an optimal peak capacity at a given analysis time. I
have also discussed bandspreading in gradient chromatogra-
phy. Based on the thoughts presented here, the existence of
significant peak compression phenomena in reversed-phase
gradient chromatography is questionable. However, in addi-
tion to the theoretical discussion in this paper, rigorous exper-
iments are planned to either dismiss or confirm the concept
of peak compression.
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