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Abstract

Peak capacity is the best measure of the performance of a gradient separation. In this paper, the theory of peak capacity for the standard
operating conditions of reversed-phase and ion-exchange chromatography is outlined. The influence of the operating conditions on the peak
capacity of a separation are discussed. Finally, bandspreading phenomena in gradient chromatography are analyzed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction been laid in the late 1970s by Ha@th and coworkerd 0,11]
Our knowledge has furtherimproved over time (¢1g]) and
The earliest publications on the subject of peak capacity still today progress is being made in resolving specific issues
in gradient elution chromatography was a short note by C.G. [13-15] A subject that was studied by several workers has
Horvath and S.R. Lipsky in Analytical Chemistry in 19[1, been the selectivity of different packinf6—19] In recent
following the creation and definition of the term by Giddings times, new attempts have been made to understand and mea-
for isocratic chromatographj2]. The paper concludes: “It  sure the selectivity of reversed-phase colug®s-22] For
is apparent from the present considerations that the goal ofmethods development, gradient elution is commonly used as
fast chromatography can best be approached in liquid chro-the first sted23], but in modern times, a gradient technique
matography by employing gradient elution”. The present is often the final goal of the method development effa4.
importance of gradient elution can be seen inthe multitude of  The general theories of gradient chromatography, were
two-dimensional LC/LC separations that have moved to the outlined in papers by Snydg5] and Jandera and Clagek
forefront of today’s separations technolofB+6]. In some [26]. Later, Snyder and coworkers dealt specifically with
cases, a two-dimensional separations scheme has also conthe subject of gradients in reversed-phase chromatography
bined an isocratic separation in the first dimension with a [27,28] Very readable reviews of the same theories can be
gradient separation in the second dimendith Also, the found also in the newer referencf3,29] With today’s
impact of gradient elution in simpler separation schemes canknowledge, the elution patterns in gradient chromatography
be seen in the work of Shen et al. who have achieved peak caare predictable based on few preliminary experiments that
pacities in the order of 1000 in a single separation dimension embrace the experimental space (§§-32).
[8]. The generalimportance of gradient separationsinmodern ~ While there is now a solid knowledge of the peak spacing
HPLC has been demonstrated in an article on comprehensivgphenomena in gradient elution, a complete measure of the
two-dimensional HPLC by Bushey and Jorgenfgjn quality of a separation requires the use of the peak widths as
The majority of the discussions in the current paper fo- well. In this paper, we are advocating the use of peak capacity
cuses on reversed-phase chromatography. The foundationgas such a measure in the case of a gradient separation, and
of our understanding of reversed-phase chromatography haveve will develop the underlying theory. A very good definition
of peak capacity has been provided by Giddings in his early
* Tel.: +1 508 482 2157 fax: +1 508 482 3100. work: “The peak capacity is the upper limit of resolvable com-
E-mail addressUwe Neue@Waters.com. ponents for a given technique under prescribed conditions”

0021-9673/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2005.03.008



154 U.D. Neue / J. Chromatogr. A 1079 (2005) 153-161

[2,33]. Grushkg34] elaborated on the factors that influence words, it is the retention time measured in peak width units.
peak capacity, such as the influence of the plate number, theThe peak width is commonly defined as four times the value
linear velocity or temperature. He also briefly discussed peak of the standard deviatios of a peak. If the peak width is
capacity under time normalization, as was done later in more changing with the retention tintg, the peak capacity needs
detail by Neue and Mazz€@5]. Peak capacity is a good to be expressed in the following integral form:
measure of the quality of a separation, if other measures are

absent. Stadalius et §B86] used it for the assessment of the Pc=1+ / —dr (1)
quality of a peptide separation, as was done in ageneral model o

for the HPLC separation of large molecules by Snyder and tg is the retention time of the unretained peak. In all the fol-
Stadaliug37]. Similarly, the concept was used for the sep- lowing discussion, we will assume that the gradient starts at
aration of proteins by ion-exchand@8]. The concept was  the column inlet immediately after the injection.

also used for the separation of complex mixtJB&y, where The peak width of every peak is a function of the retention
an assessment of the total separation capability of the chro-factorke at the point of elution and the column plate cohint
matographic setup is important. Peak capacity has occasion-

ally also been used to assess the separation power of isocratie = ﬁ(ke +1) 2
separationf39,40] A special case was the assessment of the
peak capacity in size-exclusion chromatograftiy. With this, we obtain for the peak capacity in the gradient:
A complication for the theoretical assessment of peak I
capacity in gradient elution is the peak compression phe- Pc = 1+ —/ 3)
n 10 ke + l

nomenon postulated by Snyder and Saunf#2} The idea

of peak compression has also been adopted by other author®f course, the implicit assumption in this formula is that the

[43-45] but a proof of the existence of this phenomenon plate count is not a function of the gradient and is uniform for

does not exist. Snyder’s own research gave results that con-all analytes. Inreality, this is not the case, since the plate count

tradicted the existence of a peak compression phenomenondepends on the diffusion coefficient of the analyte, which in

First, Stadalius et a]36,46]postulated an empirical factdr turn depends on its molecular weight and the viscosity of

that was compensating for the difference between the experi-the solvent. In order to proceed beyond this, one needs to

mental results and the theoretical predictions based on a pealknow more about the relationship of the diffusion coefficient

compression factdg. Hearn's result§4 7] demonstrated that  with the elution pattern of the analytes. Such a pattern can be

for the peptides studied the measured peak width was muchfound for example in the case of a separation of oligomers

larger than the value predicted using the peak compression49], where diffusion decreases as retention increases. For

factorG. Then, Stuart et a[48] confirmed their own earlier ~ the general case to be discussed here, we simply suppose

results and concluded that the product of the empirical factor a uniform sample, for which an average plate count can be

J and the gradient compression fac@was rather constant  assumed.

and equal to 1.1. The retention factor at the point of elution (and thus the

In this paper, | will first derive the equations that de- peak width) is a function of the gradient retention fadigr

scribe the peak capacity in gradient chromatography bothwhich is defined as usually:

for reversed-phase chromatography and ion-exchange chro-

matography. This is followed by a demonstration of how the kg = tl -1 4)

peak capacity changes with a change in the gradient opera-

tion. In spite of the complexity of the underlying equation, This allows us to express the peak capacity as a function of

a simple pattern describes the evolution of the peak capacitythe gradient retention factor:

with gradient retention in reversed-phase chromatography. In JN [k

ion-exchange chromatography, the dominating factor of the Pc =14+ —— / mdkg

evolution of peak capacity is the ratio of the analyte charge elkg) +

to the charge of the eluting ion. Finally, | will briefly dis-  Inorder to assess the peak capacity for different gradients, we

cuss the phenomenon of peak compression in reversed-phaseeed to express the retention factor at the point of elution as

chromatography from a new point of view. a function of the gradient retention factor for every gradient
technique that we wish to consider. This can be accomplished
for the gradient techniques for which solutions to the gradient

2. Derivation of the theory and discussion of the equation are known.

results

()

2.2. Solution to the general gradient equation
2.1. Definition of the peak capacity
In the following, we will derive the peak capacity equa-
The peak capacity; is defined as number of peaks tion in detail for reversed-phase chromatography and ion-
that can be separated within a retention window. With other exchange chromatography. In order to do this, we start with



U.D. Neue / J. Chromatogr. A 1079 (2005) 153-161 155

the fundamental definition of the retention factor under gra- change the solvent composition linearly with time, the local

dient conditions: retention factor changes with time as follows:
k= s (6)  k=koe Bre (15)
drm

Ac is the difference in solvent composition between the be-
ginning and the end of the gradief.is the slope of the
relationship between the natural logarithm of the retention
factor and the organic solvent concentratiBrdepends on
the analyte, but is for the most part a function of the molecular
drs q % weight of the analytety is the gradient run time.

m

Since the retention factor is variable, we have defined it in
the differential formts is the residence time in the station-
ary phase, anth, the time spent in the mobile phase. This
equation can be rewritten:

k(ts) The gradient equation thus becomes:
and integrated: 1 [hio :
g = eBAct/a gy — 14 (16)
tr—1Io dls fo ko 0
/ = [ ®) -
o k() Jo Integration yields:
The right-hand side is nothing but the residence time of an 1 fo |, Bacl—to)r
: . Bl ebaclr=lo)/lg _ 1) — ¢ 17
unretained peak: ko BAc( )=1to (17)
Ir—1o
/ drs =19 9) which can be rearranged to yield:
0 k(ts) 1
A solution to this equation will yield the gradient retention kg = h—fo _ 7t—gln <koBActO + 1) (18)
factor for the gradient considered. In some cases, the change fo BActo I
in retention with time can be expressed as follows: If we define the gradient slope as follows:
k(t) = kof(z 10 1
(1) = ko (1) (10 . _ .00 (19)
In this case, the change in retention with time is exclusively a fg

function of the dependence of the retention with the solvent the retention factor under gradient conditions is:
composition combined with the change in solvent composi-

tion with .t|m.e. - o - kg = —=In(Gko+ 1) (20)
Substituting this expression into the gradient equation G
above, we obtain: The retention factor at the beginning of the gradient can be
' 1 dr derived from the last equation:
@ - !
0 ko. _ Gk
or: ko= (€7 —1) (21)
é’/ (f (t))_ldt The retention factor at the point of elutiGgcan be obtained
ko= ——+—"—"—— (12) )
1o as:
With this, the retention factor at the point of elution is Ko — ko (22)
o=
£t') o dr Gko+1
ke = 10 /0 m (13) If the retention factor at the beginning of the gradient is large,
. then Eq.(22) simplifies to:
And the peak capacity becomes:
1
N [k 1 ke = — (22a)
Pc=1+‘/—/ . ————dkg (14 = G
4 Jo (f(t)/10) fo° (f(r))"dr+1

This implies that the solvent composition at the point of elu-
Thisis the general equation for the peak capacity under gradi-tion of a compound remains constant, if the compound is well
ent conditions. For some conditions, such as reversed-phaseetained at the beginning of the gradient and if the gradient
chromatography or ion-exchange under specific conditions, slope does not change. In addition, for compounds that are

the equation can be integrated. well retained at the beginning of the gradient, the retention
factor at the point of elution is uniform, if the slofiedoes
2.3. Peak capacity in reversed-phase chromatography not vary much, as is often the case for analytes of similar

molecular weight. This also means that the peak width is
In reversed-phase chromatography, the retention factor israther constant, in agreement with practical experience (see
an exponential function of the solvent composition. If we also the discussion of ER9) below).
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Combining Eqgs(21) and (22) allows us to express the
retention factor at the point of elution as a function of the
gradient retention factor:

eGkg -1
G €Ckg
We will put this expression for the retention factor at the point

of elution into the equation for the peak capacity:

VN [k 1
Po=1+— dk 24
e=1+ 4LA (eGks — 1)/(G €Gka) + 1 9 (4)
With rearrangement, we obtain:

ke = (23)

f(G,Ac)

VN (%o eCkg 8 S 2 o
Po=1+— dk 25 s 2 = T AR o
T 4/0 (€55 — 1)/G + &0t 8 (23) . 228883
Integration yields the following expression for the peak ca-
pacity under reversed-phase conditions: Fig. 1. Display of the function i in Eq.(28). The function is proportional
to the peak capacity.
VN 1 G+1g 1
Pe=1+ 4 Gr 1'” < G ¢~ G) (26) from 1 to 64. The smallest value exemplifies a gradient with

) ) ) small molecules over a range of 10% organic. The largest
If we want to consider the entire peak capacity from the be- 4jye is a representation of a gradient over the full solvent

ginning to the end of the gradient, we need to express the composition range with peptides as samples. All axes are log-
gradient retention factor as a function of the solvent compo- githmic. For a steep gradient over a limited solvent range,

sition at the end of the gradient. With the definition of the the function is very low, under 1. For a flatter gradient with
gradient slopés in Eq. (19), the factorGkg required inthe 5 gradient steepness of around 0.1, most of the gradient per-

last equation is nothing but the following: formance has been reached already, especially for gradients
Gkg = BAc 27) coverin_g a Iarger_ range in _solvent composition._
In Fig. 2 the increase in the peak capacRyis shown

Thus, we can study the influence of the gradient slger with an increase in the gradient duration for a few selected
a fixed elution windowAc and a type or molecular weight gradients. The column plate count was assumed to be 10 000.
range of compounds characterized by a typical sIBpzf The lines shown apply to (from bottom to top) to gradients
the relation of the logarithmic retention factor with solvent covering a span of 20%, 30%, 40% and 100% organic. For
composition with the following equation: the nearly parallel lines that cover a narrower gradient span,

the peak capacity increases by only about 50% if the gradient

VN 1 n <G+133AC — 1) (28) duration is increased by a factor of 10. For the gradient cov-
G G ering the entire solvent range, the increase in peak capacity

A few comments m|ght be necessary with respect to the mag-iS Inltla”y about a factor of 2 with a 10-fold increase in the
nitude of the common values of the gradient sl@eand the gradient duration, but then the gain decreases for still slower
slopeB of the relationship of the logarithm of the retention
factor and the solvent composition. For small molecules, the 500
value of B is about 10 (if the solvent concentration is ex- 450
pressed as the volume fraction). Typical valuesFéor small 400
molecules are 0.1-0.3. The largest value obtained with very q 350
steep gradients is around 3, the smallest value for very flat 2 300
gradients is around 0.03. Typical values®for peptides are 250 \
over two times larger. This stems from the fact that a typical 200 o \
value ofB is about 40 for a small peptide, but the gradient is 150 T
typically executed over a narrower span of organic solvent. 100 -

The function inG andBAc of Eq.(28)is shown inFig. 1 T
To obtain the peak capacity from this function, the value on %0
the vertical axis needs to be multiplied by one fourth of the %_om 0.01 01 ]
square root of the plate count, e.g. 25 for a plate count of .
10000. The gradient steepness functi®@overs the entire Gradient Slope G

range of in.tereSt from very ﬂa_-t gradients :(: 0.01) to very Fig. 2. Peak capacity as a function of the gradient steeftBiefssm bottom
steep gradientsd=8). The axis that describdsAc ranges to top: 20%, 30% 40%, 100% organic.

Peak Capacit
[
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gradients as well. This rather limited increase in separation 200

power with a significant increase in analysis time constrains nes
the manipulation of a separation via a simple expansion of 230
the gradient run time. Q n=2

Under some circumstances, e.g. for the separation of large & i VD
molecules such as peptides or for rapid gradients that stretch § 150 =
over alarge range of solvent composition such as the gradients § e N=08
used in combinatorial chemistry, E@8) simplifies to: § 100

VN BAc B 50

P=1+ ey (29) /
This form of the equation has been used in previous publica- o 10 20 30 40 50 60
tions where such rapid gradients were discu$38¢50,51] Gradient Retention Factor k

The simplified form of the equation results from the assump-
tion that the peak width of all peaks in the chromatogram is Fig. 3. Peak capacit} as a function of the gradient retention fackgrfor
essentially equal. This permits for example the assessmenfon-exchange separations. The charge ratio for each line is marked on the
of the influence of extra-column effects on the peak capacity. 9raph-

However, for gradients over a limited range of solvent com-
position with small molecule analytes, the complete 28)

should be used. , K 1 4 kg
ke = k(lr ) = = - =
(Dsty'/tg)"  n+1ltg n+1

the retention factor at the point of elutiéais:

(39)

2.4. Peak capacity in ion-exchange chromatography
Now, in analogy to Eq(3), the equation for the peak capacity

The theory of the gradient elution pattern in ion-exchange is simply:

chromatography had already been elaborated in the late 1950s NG 1
[52]. In pure ion exchange, the retention factor depends on p, = 1 + 7/ ———————dkg (36)
the concentration of the salt soluti@hand the ratio of the 4 Jo kg/(n+1)+1
charge of the analyte to the charge of the competing ion in The jntegration of Eq(36) results in the explicit solution for
the mobile phase. the peak capacity in a salt gradient in ion-exchange chro-
K matography:
k= o (30) UE
N kg
The common way to execute an ion-exchange separation isfe =1+ T(” +1)in <n +1 + 1) (37)

to run a gradient with increasing salt solution (and constant ) o
pH). The concentration of the salt solution is programmed to AN important aspect of this equation is the fact that the peak

increase with the gradient tinte capacity depends on the charge of the ions to be separated,
or—more specifically—on the ratin of the charge of the
D(t) = Dfi (31) ions to be separated to the charge of the competing ion. The
I peak capacity is shown as a function of the gradient retention

factor for values of from 0.5 to 3 inFig. 3. For a particular
gradient retention factor, the peak capacity increases with the
value ofn.

Dy is the final salt concentration, anglis the gradient run
time. Thus, the retention factor changes as follows with time:
k() = —— (32) _ . .
(Dst/tg) 2.5. Peak width patterns as a function of the gradient
The equation for the retention timg under gradient condi-

tions is: Even if the peak capacity in a particular gradient method

) cannot be calculated from scratch, it is still worth our while
1 /’r (D t )" dr = to see, how the retention factor at the point of elution changes
— f— t =10 (33) . . . -
K Jo fy with the gradient retention factor. The reason for this is the
fact that the retention factor at the point of elution deter-
mines the peak width, as shown in E8g). If a relationship
1 [/ Df\" ¢+t can be found between the retention factor at the point of elu-
=01 () (34) tion ke and the gradient retention factky, the peak width

can be calculated as a function of the gradient retention. For

The ratior,’/ 1p is the nothing but the gradient retention factor reversed-phase chromatography, such a dependence is found
kg. In the next step, we substitute §§4)into Eq.(32), and in Eq.(23), and in Eq(35) for ion exchange.

After integration, we obtain foK:

fg to
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For reversed-phase gradients, the following link between factor at the point of elution and thus the peak width becomes
the peak width and the gradient retention factor can be estab-quickly constant and independent of retention. Note also that

lished: the retention factor at the point of elution, and thus the peak
o (€S 1 width, is much narrower for the “steeper” gradient. As can
o= ﬁ (m + 1) (38) be seen, the observed patterns of elution in reversed-phase
chromatography depend strongly on the gradient steepness
For ion-exchange, we obtain: factorG.
Eqg.(39), which applies to ion-exchange chromatography,
o= fo ( kg + 1) (39) deserves an additional comment. The increase in peak width
VN \n+1 with retention decreases with an increased charge of the an-

These two equations point to a fundamentally different rela- alyte. For highly charged analytes, the peak width will be-
tionship between reversed-phase gradients and ion-exchang€ome rather constant and independent on retention. This is
gradients. In ion-exchange gradients, the peak width in- analogous to the situation in reversed-phase chromatography,
creases linearly with the gradient retention factor. This is Where peptides exhibit a constant peak width throughout the
not the case for reversed-phase chromatography, where thgradientchromatogram. An example of such a situation is the
increase in peak width with gradient retention is much more @nion-exchange chromatography of oligonucleoti@és.
moderate. This applies especially to the case of peptide sep- ) . ) )

arations, where the value kg is much larger than 1, and 2.6. Patterns of peak capacity with gradient execution

the peak width becomes constant: . _ _
Up to now, the discussion has focussed exclusively on the

o~ o (1 + 1> (40) influence of the gradient itself on the peak capacity, with a
fixed column performance, implying a fixed linear velocity.

This situation is commonly encountered in the case of peptide HOW‘?VGF a more mtere.stmg scenario can be found, if the
vfelocny is change at a fixed gradient run time. Under these

separations by reversed-phase chromatography. The cause o . o
this is the fact that the dependence of retention on Solventcwcumstances, the bandspreading phenomena inside the col-

composition is rather steg¢p3,54] umn as well as the execution of the gradient are changed

For the case of reversed-phase chromatography, the Ioeal?imultameo_usly while maintaining_ a fixed solvent Windqw
width pattern can be examined via the relationship in the or the elution of the analytes of interest. We have studied

parentheses of E¢38) (Fig. 4). The retention factor at the :]mshsnuatloln Itn prgwouhs_ put()jhc?trl]c_)m:S,Sﬂo,Sl] Itn general,. I
point of elution shown on the vertical axis is a measure of the 'gher resolution IS achieved at Nigner flow rates, especiatly

peak width. The gradient retention factor forms the horizontal for rapld gradients f romQto 10.0 % organic, as _they are com-
axis. For a “flat” gradient wittG=0.1 or less, as it can be Ton " the analysis of drugs in biological fluids with MS

executed with small molecules as samples, the peak widthdetecuon[%]' The same principle applies also o gradlents
increases with increased retention. This is not dissimilar to that extend only over a narrower solvent composition range.

isocratic chromatography, which is the limiting case for very An example is shown ifig. 5. Plotted is the peak capacity

“flat’ gradients. On the other hand, for “steeper” gradients as as a function of the flow rate and the gradient duration for
. ; ' . a gradient that stretches over a range of 30% organic. The
th f t I 1), th tent . .
ey are common for peptide sampl€s(1), the retention column is a 50 mnx 2.1 mm column packed with 1dm

particles. For a very rapid gradient with a gradient duration
of only 1 min, the best results are obtained at a flow rate
around 1.2 mL/min. On the other hand, for a 60-min gradi-
ent the best conditions are around 0.25 mL/min. The more
stretched-out gradient also achieves a higher peak capacity
than the fast gradient, but if the analysis time is important,
a well executed 1-min gradient can still achieve one third of
the peak capacity of a 60-min gradient.

ko +1

2.7. Bandspreading and peak compression

The bandspreading of a peak depends to some degree
on the retention factor. At low velocities combined with a
high retention factor, stationary phase diffusion may be the
dominant factor of peak broadening. At intermediate to low
Fig. 4. The relationship between the paraméter 1 and the gradient re- veIOC|t|_es, the bandspreadlng is dominated by packed _bed
tention factolky for various reversed-phase gradients with different gradient NON-uniformity terms, which do not depend on the retention
steepness functior@. factor. At high velocities, the dependence of the mass
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Ais a factor of the packed bed quality, the factpgs and

ys are the obstruction factors in the mobile phase and the
stationary phase, respectively, ang andcs are the mass
transfer coefficients for the mobile phase and the stationary
phase. Both the diffusion term (the second term) and the mass
transfer term (the third term) depend on the retention fdctor
and the diffusion coefficient in the mobile phd3g and thus

are variable during gradient elution. In Eq43) and (44),

this is expressed as the dependence on the positiorthe

Peak Capacity
8

80 column. In addition, the stationary phase diffusidg may

60 also depend on the solvent composition, but the dependence

20 64 may be much weaker, and we have, therefore, rather assumed
23 an independence on the solvent composition.

The diffusion term shows an increase in stationary phase
diffusion with increasing residence in the colurf&9—61]

T o Ty Gradient For slow, high-resolution gradients on modern, very small
o g ¥ m 8 o o . . . . . .
o g R = Duration particles, stationary phase diffusion may be a more important
Flow Rate [mL/min] - [min] factor than for larger particle sizes, where the longitudinal dif-

fusion plays an insignificant role. On the other hand, smaller
Fig. 5. Peak capacity as a function of flow rate and gradient duration for particles permit shorter run times for equal performance, and
an inz'w‘ir‘]’vlth a mo'et?tl"ar_""eight of 55?] ona Eom'ﬂt-l mmhco'“Gm”d_  under these circumstances the influence of stationary phase
gsgnésgg/lo. um particles in reversed-phase chromatography. Gradient gt sion is still small. With respect to the effect of the vari-

able retention on the mobile-phase and stationary-phase mass
transfer on the retention factor is rather weak for retained transfer terms, the combination of both exhibits a maximum

peaks on fully porous packings7]. at intermediate retentiofb5]. The consequence of this is'
Therefore, the height-equivalent to a theoretical ptite that the overall effgct of the restriction to mass transfer is
a function of the locatiot. inside the columi57]: only s_mall for practical small-molecule separatlons._ _
Thistreatmentdemonstrates that the bandspreadingin gra-
o daﬁ (a1) dient chromatography is a function of the details of the elution

conditions. On the other hand, in realistic gradients under re-
alistic flow rates, the variation of the HETP during elution is

expected to be rather small. In most practical circumstances,
) L the effective migration of an analyte will occur over a very

op = / H(L)dL (42) similar range of solvent composition, and therefore, the band-
0 spreading will be similar. In addition, the treatment shown

The theoretical plate heiglit depends on the diffusion co-  here does not imply any band compression at all. The dis-

efficientDy and the retention factds; and both inturnarea  cussion above showed that all phenomena that contribute to

function of the solvent composition and, therefore, a function bandspreading are essentially the same for an isocratic op-
of the positiorL of the band inside the column, which varies eration or a gradient operation. During the migration of a

T dL
and the total peak varianeg is, therefore:

with the details of the gradient execution: band inside the column, a band compression is therefore not
expected. The only contribution from the changing solvent
H(L) = f(Dm(L), k(L)) (43) composition is an averaging effect over the contributions that

While this complicates the theoretical assessment, there jone would have encountered in an isocratic operation, i.e. the
no fundamental impediment to this measurement. A proce- depeqdence of some of the parameters of the Van Dee”_“ef
dure for the measurement of the theoretical plate height in equatlgn gn the pfosmon of the b?jpd ms:dg the ;:]olumn dis-
reversed-phase gradient chromatography has been propose(a‘Isse above. Of course, in gradient elution, the retention
and demonstrated {57]. factor changes between the part of the peak that elutes early
We can use a modern version of the Van Deemterequationand the part of the peak that elutes late. On the other hand,

[58] to estimate the influence of the different contributions to 1€ Mere transformation of the peak from a band inside the
the bandspreading in the column: columnto a peak dissolved in mobile phase at the column out-

let does not include any peak sharpening mechanism, except
2 for under extreme circumstances not commonly encountered
H=a+ ;(VM Dw(L) + ysDsk(L)) in the practice of gradient chromatography, i.e. very steep
) o K2(L) s K(IL) gradients or even step grad|ents. Consequen_tly, if we accept
+dpu Dol 5+ e 5 (44) the model of a separation of the bandspreading phenomena
m(L) (k(L)+1) s (k(L)+1) inside the column from the elution phenomena, the idea of
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band compression needs to be dismissed. Thisis in agreemermneversed-phase gradients and for ion-exchange gradients has
with the measured data in referer{d8]. We have recently  been presented. Also, the combination of velocity-dependent
also executed computer models on peak compression undebandspreading with the gradient elution profile can be derived
the condition of step gradients, using a random walk model to permit an optimal peak capacity at a given analysis time. |
in a porous packed bed. For any peaks that eluted unretainedave also discussed bandspreading in gradient chromatogra-
after the gradient step caught up with them, no peak compres-phy. Based on the thoughts presented here, the existence of
sion was observed. On the other hand, for peaks that simplysignificant peak compression phenomena in reversed-phase
changed retention factor, some peak compression was ob-gradient chromatography is questionable. However, in addi-
served, when the gradient step caught up with the peak closetion to the theoretical discussion in this paper, rigorous exper-
to the end of the column. Of course, computer experimentsiments are planned to either dismiss or confirm the concept
may contain some flaws in the thought process, as do pureof peak compression.

theories. Therefore, carefully designed experiments are cur-

rently planned that will shed light on this subject and give a

final answer to the old question of peak compression. References
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